15.3: Double Integrals in Polar Coordinates (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    2611
    • 15.3: Double Integrals in Polar Coordinates (1)
    • Gilbert Strang & Edwin “Jed” Herman
    • OpenStax

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives
    • Recognize the format of a double integral over a polar rectangular region.
    • Evaluate a double integral in polar coordinates by using an iterated integral.
    • Recognize the format of a double integral over a general polar region.
    • Use double integrals in polar coordinates to calculate areas and volumes.

    Double integrals are sometimes much easier to evaluate if we change rectangular coordinates to polar coordinates. However, before we describe how to make this change, we need to establish the concept of a double integral in a polar rectangular region.

    Polar Rectangular Regions of Integration

    When we defined the double integral for a continuous function in rectangular coordinates—say, \(g\) over a region \(R\) in the \(xy\)-plane—we divided \(R\) into subrectangles with sides parallel to the coordinate axes. These sides have either constant \(x\)-values and/or constant \(y\)-values. In polar coordinates, the shape we work with is a polar rectangle, whose sides have constant \(r\)-values and/or constant \(\theta\)-values. This means we can describe a polar rectangle as in Figure \(\PageIndex{1a}\), with \(R = \{(r,\theta)\,|\, a \leq r \leq b, \, \alpha \leq \theta \leq \beta\}\).

    15.3: Double Integrals in Polar Coordinates (2)

    In this section, we are looking to integrate over polar rectangles. Consider a function \(f(r,\theta)\) over a polar rectangle \(R\). We divide the interval \([a,b]\) into \(m\) subintervals \([r_{i-1}, r_i]\) of length \(\Delta r = (b - a)/m\) and divide the interval \([\alpha, \beta]\) into \(n\) subintervals \([\theta_{i-1}, \theta_i]\) of width \(\Delta \theta = (\beta - \alpha)/n\). This means that the circles \(r = r_i\) and rays \(\theta = \theta_i\) for \(1 \leq i \leq m\) and \(1 \leq j \leq n\) divide the polar rectangle \(R\) into smaller polar subrectangles \(R_{ij}\) (Figure \(\PageIndex{1b}\)).

    As before, we need to find the area \(\Delta A\) of the polar subrectangle \(R_{ij}\) and the “polar” volume of the thin box above \(R_{ij}\). Recall that, in a circle of radius \(r\) the length \(s\) of an arc subtended by a central angle of \(\theta\) radians is \(s = r\theta\). Notice that the polar rectangle \(R_{ij}\) looks a lot like a trapezoid with parallel sides \(r_{i-1}\Delta \theta\) and \(r_i\Delta \theta\) and with a width \(\Delta r\). Hence the area of the polar subrectangle \(R_{ij}\) is

    \[\Delta A = \frac{1}{2} \Delta r (r_{i-1} \Delta \theta + r_i \Delta \theta ). \nonumber \]

    Simplifying and letting

    \[r_{ij}^* = \frac{1}{2}(r_{i-1}+r_i) \nonumber \]

    we have \(\Delta A = r_{ij}^* \Delta r \Delta \theta\).

    Therefore, the polar volume of the thin box above \(R_{ij}\) (Figure \(\PageIndex{2}\)) is

    \[f(r_{ij}^*, \theta_{ij}^*) \Delta A = f(r_{ij}^*, \theta_{ij}^*)r_{ij}^* \Delta r \Delta \theta. \nonumber \]

    15.3: Double Integrals in Polar Coordinates (3)

    Using the same idea for all the subrectangles and summing the volumes of the rectangular boxes, we obtain a double Riemann sum as

    \[\sum_{i=1}^m \sum_{j=1}^n f(r_{ij}^*, \theta_{ij}^*) r_{ij}^* \Delta r \Delta \theta. \nonumber \]

    As we have seen before, we obtain a better approximation to the polar volume of the solid above the region \(R\) when we let \(m\) and \(n\) become larger. Hence, we define the polar volume as the limit of the double Riemann sum,

    \[V = \lim_{m,n\rightarrow\infty}\sum_{i=1}^m \sum_{j=1}^n f(r_{ij}^*, \theta_{ij}^*) r_{ij}^* \Delta r \Delta \theta. \nonumber \]

    This becomes the expression for the double integral.

    Definition: The double integral in polar coordinates

    The double integral of the function \(f(r, \theta)\) over the polar rectangular region \(R\) in the \(r\theta\)-plane is defined as

    \[\begin{align} \iint_R f(r, \theta)dA &= \lim_{m,n\rightarrow\infty}\sum_{i=1}^m \sum_{j=1}^n f(r_{ij}^*, \theta_{ij}^*) \Delta A \\[4pt] &= \lim_{m,n\rightarrow \infty} \sum_{i=1}^m \sum_{j=1}^n f(r_{ij}^*,\theta_{ij}^*)r_{ij}^* \Delta r \Delta \theta. \end{align} \nonumber \]

    Again, just as in section on Double Integrals over Rectangular Regions, the double integral over a polar rectangular region can be expressed as an iterated integral in polar coordinates. Hence,

    \[\iint_R f(r, \theta)\,dA = \iint_R f(r, \theta) \,r \, dr \, d\theta = \int_{\theta=\alpha}^{\theta=\beta} \int_{r=a}^{r=b} f(r,\theta) \,r \, dr \, d\theta. \nonumber \]

    Notice that the expression for \(dA\) is replaced by \(r \, dr \, d\theta\) when working in polar coordinates. Another way to look at the polar double integral is to change the double integral in rectangular coordinates by substitution. When the function \(f\) is given in terms of \(x\) and \(y\) using \(x = r \, \cos \, \theta, \, y = r \, \sin \, \theta\), and \(dA = r \, dr \, d\theta\) changes it to

    \[\iint_R f(x,y) \,dA = \iint_R f(r \, \cos \, \theta, \, r \, \sin \, \theta ) \,r \, dr \, d\theta. \nonumber \]

    Note that all the properties listed in section on Double Integrals over Rectangular Regions for the double integral in rectangular coordinates hold true for the double integral in polar coordinates as well, so we can use them without hesitation.

    Example \(\PageIndex{1A}\): Sketching a Polar Rectangular Region

    Sketch the polar rectangular region

    \[R = \{(r, \theta)\,|\,1 \leq r \leq 3, 0 \leq \theta \leq \pi \}. \nonumber \]

    Solution

    As we can see from Figure \(\PageIndex{3}\), \(r = 1\) and \(r = 3\) are circles of radius 1 and 3 and \(0 \leq \theta \leq \pi\) covers the entire top half of the plane. Hence the region \(R\) looks like a semicircular band.

    15.3: Double Integrals in Polar Coordinates (4)

    Now that we have sketched a polar rectangular region, let us demonstrate how to evaluate a double integral over this region by using polar coordinates.

    Example \(\PageIndex{1B}\): Evaluating a Double Integral over a Polar Rectangular Region

    Evaluate the integral \(\displaystyle \iint_R 3x \, dA\) over the region \(R = \{(r, \theta)\,|\,1 \leq r \leq 2, \, 0 \leq \theta \leq \pi \}.\)

    Solution

    First we sketch a figure similar to Figure \(\PageIndex{3}\), but with outer radius \(r=2\). From the figure we can see that we have

    \[\begin{align*} \iint_R 3x \, dA &= \int_{\theta=0}^{\theta=\pi} \int_{r=1}^{r=2} 3r \, \cos \, \theta \,r \, dr \, d\theta \quad\text{Use an integral with correct limits of integration.} \\ &= \int_{\theta=0}^{\theta=\pi} \cos \, \theta \left[\left. r^3\right|_{r=1}^{r=2}\right] d\theta \quad\text{Integrate first with respect to $r$.} \\ &=\int_{\theta=0}^{\theta=\pi} 7 \, \cos \, \theta \, d\theta \\ &= 7 \, \sin \, \theta \bigg|_{\theta=0}^{\theta=\pi} = 0. \end{align*}\]

    Exercise \(\PageIndex{1}\)

    Sketch the region \(D = \{ (r,\theta) \vert 1\leq r \leq 2, \, -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \}\), and evaluate \(\displaystyle \iint_R x \, dA\).

    Hint

    Follow the steps in Example \(\PageIndex{1A}\).

    Answer

    \(\frac{14}{3}\)

    Example \(\PageIndex{2A}\): Evaluating a Double Integral by Converting from Rectangular Coordinates

    Evaluate the integral

    \[\iint_R (1 - x^2 - y^2) \,dA \nonumber \]

    where \(R\) is the unit circle on the \(xy\)-plane.

    Solution

    The region \(R\) is a unit circle, so we can describe it as \(R = \{(r, \theta )\,|\,0 \leq r \leq 1, \, 0 \leq \theta \leq 2\pi \}\).

    Using the conversion \(x = r \, \cos \, \theta, \, y = r \, \sin \, \theta\), and \(dA = r \, dr \, d\theta\), we have

    \[\begin{align*} \iint_R (1 - x^2 - y^2) \,dA &= \int_0^{2\pi} \int_0^1 (1 - r^2) \,r \, dr \, d\theta \\[4pt] &= \int_0^{2\pi} \int_0^1 (r - r^3) \,dr \, d\theta \\ &= \int_0^{2\pi} \left[\frac{r^2}{2} - \frac{r^4}{4}\right]_0^1 \,d\theta \\&= \int_0^{2\pi} \frac{1}{4}\,d\theta = \frac{\pi}{2}. \end{align*}\]

    Example \(\PageIndex{2B}\): Evaluating a Double Integral by Converting from Rectangular Coordinates

    Evaluate the integral \[\displaystyle \iint_R (x + y) \,dA \nonumber \] where \(R = \big\{(x,y)\,|\,1 \leq x^2 + y^2 \leq 4, \, x \leq 0 \big\}.\)

    Solution

    We can see that \(R\) is an annular region that can be converted to polar coordinates and described as \(R = \left\{(r, \theta)\,|\,1 \leq r \leq 2, \, \frac{\pi}{2} \leq \theta \leq \frac{3\pi}{2} \right\}\) (see the following graph).

    15.3: Double Integrals in Polar Coordinates (5)

    Hence, using the conversion \(x = r \, \cos \, \theta, \, y = r \, \sin \, \theta\), and \(dA = r \, dr \, d\theta\), we have

    \[\begin{align*} \iint_R (x + y)\,dA &= \int_{\theta=\pi/2}^{\theta=3\pi/2} \int_{r=1}^{r=2} (r \, \cos \, \theta + r \, \sin \, \theta) r \, dr \, d\theta \\ &= \left(\int_{r=1}^{r=2} r^2 \, dr\right)\left(\int_{\pi/2}^{3\pi/2} (\cos \, \theta + \sin \, \theta)\,d\theta\right) \\ &= \left. \left[\frac{r^3}{3}\right]_1^2 [\sin \, \theta - \cos \, \theta] \right|_{\pi/2}^{3\pi/2} \\ &= - \frac{14}{3}. \end{align*}\]

    Exercise \(\PageIndex{2}\)

    Evaluate the integral \[ \displaystyle \iint_R (4 - x^2 - y^2)\,dA \nonumber \] where \(R\) is the circle of radius 2 on the \(xy\)-plane.

    Hint

    Follow the steps in the previous example.

    Answer

    \(8\pi\)

    General Polar Regions of Integration

    To evaluate the double integral of a continuous function by iterated integrals over general polar regions, we consider two types of regions, analogous to Type I and Type II as discussed for rectangular coordinates in section on Double Integrals over General Regions. It is more common to write polar equations as \(r = f(\theta)\) than \(\theta = f(r)\), so we describe a general polar region as \(R = \{(r, \theta)\,|\,\alpha \leq \theta \leq \beta, \, h_1 (\theta) \leq r \leq h_2(\theta)\}\) (Figure \(\PageIndex{5}\)).

    15.3: Double Integrals in Polar Coordinates (6)
    Theorem: Double Integrals over General Polar Regions

    If \(f(r, \theta)\) is continuous on a general polar region \(D\) as described above, then

    \[\iint_D f(r, \theta ) \,r \, dr \, d\theta = \int_{\theta=\alpha}^{\theta=\beta} \int_{r=h_1(\theta)}^{r=h_2(\theta)} f(r,\theta) \, r \, dr \, d\theta. \nonumber \]

    Example \(\PageIndex{3}\): Evaluating a Double Integral over a General Polar Region

    Evaluate the integral

    \[\iint_D r^2 \sin \theta \, r \, dr \, d\theta \nonumber \]

    where \(D\) is the region bounded by the polar axis and the upper half of the cardioid \(r = 1 + \cos \, \theta\).

    Solution

    We can describe the region \(D\) as \(\{(r, \theta)\,|\,0 \leq \theta \leq \pi, \, 0 \leq r \leq 1 + \cos \, \theta\} \) as shown in Figure \(\PageIndex{6}\).

    15.3: Double Integrals in Polar Coordinates (7)

    Hence, we have

    \[\begin{align*} \iint_D r^2 \sin \, \theta \, r \, dr \, d\theta &= \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=1+\cos \theta} (r^2 \sin \, \theta) \,r \, dr \, d\theta \\ &= \frac{1}{4}\left.\int_{\theta=0}^{\theta=\pi}[r^4] \right|_{r=0}^{r=1+\cos \, \theta} \sin \, \theta \, d\theta \\ &= \frac{1}{4} \int_{\theta=0}^{\theta=\pi} (1 + \cos \, \theta )^4 \sin \, \theta \, d\theta \\ &= - \frac{1}{4} \left[ \frac{(1 + \cos \, \theta)^5}{5}\right]_0^{\pi} = \frac{8}{5}.\end{align*}\]

    Exercise \(\PageIndex{3}\)

    Evaluate the integral

    \[\iint_D r^2 \sin^2 2\theta \,r \, dr \, d\theta \nonumber \]

    where \(D = \left\{ (r,\theta)\,|\,0 \leq \theta \leq \pi, \, 0 \leq r \leq 2 \sqrt{\cos \, 2\theta} \right\}\).

    Hint

    Graph the region and follow the steps in the previous example.

    Answer

    \(\frac{\pi}{8}\)

    Polar Areas and Volumes

    As in rectangular coordinates, if a solid \(S\) is bounded by the surface \(z = f(r, \theta)\), as well as by the surfaces \(r = a, \, r = b, \, \theta = \alpha\), and \(\theta = \beta\), we can find the volume \(V\) of \(S\) by double integration, as

    \[V = \iint_R f(r, \theta) \,r \, dr \, d\theta = \int_{\theta=\alpha}^{\theta=\beta} \int_{r=a}^{r=b} f(r,\theta)\, r \, dr \, d\theta. \nonumber \]

    If the base of the solid can be described as \(D = \{(r, \theta)|\alpha \leq \theta \leq \beta, \, h_1 (\theta) \leq r \leq h_2(\theta)\}\), then the double integral for the volume becomes

    \[V = \iint_D f(r, \theta) \,r \, dr \, d\theta = \int_{\theta=\alpha}^{\theta=\beta} \int_{r=h_1(\theta)}^{r=h_2(\theta)} f(r,\theta) \,r \, dr \, d\theta. \nonumber \]

    We illustrate this idea with some examples.

    Example \(\PageIndex{4A}\): Finding a Volume Using a Double Integral

    Find the volume of the solid that lies under the paraboloid \(z = 1 - x^2 - y^2\) and above the unit circle on the \(xy\)-plane (Figure \(\PageIndex{7}\)).

    15.3: Double Integrals in Polar Coordinates (8)

    Solution

    By the method of double integration, we can see that the volume is the iterated integral of the form

    \[\displaystyle \iint_R (1 - x^2 - y^2)\,dA \nonumber \]

    where \(R = \big\{(r, \theta)\,|\,0 \leq r \leq 1, \, 0 \leq \theta \leq 2\pi\big\}\).

    This integration was shown before in Example \(\PageIndex{2A}\), so the volume is \(\frac{\pi}{2}\) cubic units.

    Example \(\PageIndex{4B}\): Finding a Volume Using Double Integration

    Find the volume of the solid that lies under the paraboloid \(z = 4 - x^2 - y^2\) and above the disk \((x - 1)^2 + y^2 = 1\) on the \(xy\)-plane. See the paraboloid in Figure \(\PageIndex{8}\) intersecting the cylinder \((x - 1)^2 + y^2 = 1\) above the \(xy\)-plane.

    15.3: Double Integrals in Polar Coordinates (9)

    Solution

    First change the disk \((x - 1)^2 + y^2 = 1\) to polar coordinates. Expanding the square term, we have \(x^2 - 2x + 1 + y^2 = 1\). Then simplify to get \(x^2 + y^2 = 2x\), which in polar coordinates becomes \(r^2 = 2r \, \cos \, \theta\) and then either \(r = 0\) or \(r = 2 \, \cos \, \theta\). Similarly, the equation of the paraboloid changes to \(z = 4 - r^2\). Therefore we can describe the disk \((x - 1)^2 + y^2 = 1\) on the \(xy\) -plane as the region

    \[D = \{(r,\theta)\,|\,0 \leq \theta \leq \pi, \, 0 \leq r \leq 2 \, \cos \theta\}. \nonumber \]

    Hence the volume of the solid bounded above by the paraboloid \(z = 4 - x^2 - y^2\) and below by \(r = 2 \, \cos \theta\) is

    \[\begin{align*} V &= \iint_D f(r, \theta) \,r \, dr \, d\theta \\&= \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=2 \, \cos \, \theta} (4 - r^2) \,r \, dr \, d\theta\\ &= \int_{\theta=0}^{\theta=\pi}\left.\left[4\frac{r^2}{2} - \frac{r^4}{4}\right|_0^{2 \, \cos \, \theta}\right]d\theta \\ &= \int_0^{\pi} [8 \, \cos^2\theta - 4 \, \cos^4\theta]\,d\theta \\&= \left[\frac{5}{2}\theta + \frac{5}{2} \sin \, \theta \, \cos \, \theta - \sin \, \theta \cos^3\theta \right]_0^{\pi} = \frac{5}{2}\pi\; \text{units}^3. \end{align*}\]

    Notice in the next example that integration is not always easy with polar coordinates. Complexity of integration depends on the function and also on the region over which we need to perform the integration. If the region has a more natural expression in polar coordinates or if \(f\) has a simpler antiderivative in polar coordinates, then the change in polar coordinates is appropriate; otherwise, use rectangular coordinates.

    Example \(\PageIndex{5A}\): Finding a Volume Using a Double Integral

    Find the volume of the region that lies under the paraboloid \(z = x^2 + y^2\) and above the triangle enclosed by the lines \(y = x, \, x = 0\), and \(x + y = 2\) in the \(xy\)-plane.

    Solution

    First examine the region over which we need to set up the double integral and the accompanying paraboloid.

    15.3: Double Integrals in Polar Coordinates (10)

    The region \(D\) is \(\{(x,y)\,|\,0 \leq x \leq 1, \, x \leq y \leq 2 - x\}\). Converting the lines \(y = x, \, x = 0\), and \(x + y = 2\) in the \(xy\)-plane to functions of \(r\) and \(\theta\) we have \(\theta = \pi/4, \, \theta = \pi/2\), and \(r = 2 / (\cos \, \theta + \sin \, \theta)\), respectively. Graphing the region on the \(xy\)- plane, we see that it looks like \(D = \{(r, \theta)\,|\,\pi/4 \leq \theta \leq \pi/2, \, 0 \leq r \leq 2/(\cos \, \theta + \sin \, \theta)\}\).

    Now converting the equation of the surface gives \(z = x^2 + y^2 = r^2\). Therefore, the volume of the solid is given by the double integral

    \[\begin{align*} V &= \iint_D f(r, \theta)\,r \, dr \, d\theta \\&= \int_{\theta=\pi/4}^{\theta=\pi/2} \int_{r=0}^{r=2/ (\cos \, \theta + \sin \, \theta)} r^2 r \, dr d\theta \\ &= \int_{\pi/4}^{\pi/2}\left[\frac{r^4}{4}\right]_0^{2/(\cos \, \theta + \sin \, \theta)} d\theta \\ &=\frac{1}{4}\int_{\pi/4}^{\pi/2} \left(\frac{2}{\cos \, \theta + \sin \, \theta}\right)^4 d\theta \\ &= \frac{16}{4} \int_{\pi/4}^{\pi/2} \left(\frac{1}{\cos \, \theta + \sin \, \theta} \right)^4 d\theta \\&= 4\int_{\pi/4}^{\pi/2} \left(\frac{1}{\cos \, \theta + \sin \, \theta}\right)^4 d\theta. \end{align*}\]

    As you can see, this integral is very complicated. So, we can instead evaluate this double integral in rectangular coordinates as

    \[V = \int_0^1 \int_x^{2-x} (x^2 + y^2) \,dy \, dx. \nonumber \]

    Evaluating gives

    \[\begin{align*} V &= \int_0^1 \int_x^{2-x} (x^2 + y^2) \,dy \, dx \\&= \int_0^1 \left.\left[x^2y + \frac{y^3}{3}\right]\right|_x^{2-x} dx\\ &= \int_0^1 \frac{8}{3} - 4x + 4x^2 - \frac{8x^3}{3} \,dx \\ &= \left.\left[\frac{8x}{3} - 2x^2 + \frac{4x^3}{3} - \frac{2x^4}{3}\right]\right|_0^1 \\&= \frac{4}{3} \; \text{units}^3. \end{align*}\]

    To answer the question of how the formulas for the volumes of different standard solids such as a sphere, a cone, or a cylinder are found, we want to demonstrate an example and find the volume of an arbitrary cone.

    Example \(\PageIndex{5B}\): Finding a Volume Using a Double Integral

    Use polar coordinates to find the volume inside the cone \(z = 2 - \sqrt{x^2 + y^2}\) and above the \(xy\)-plane.

    Solution

    The region \(D\) for the integration is the base of the cone, which appears to be a circle on the \(xy\)-plane (Figure \(\PageIndex{10}\)).

    15.3: Double Integrals in Polar Coordinates (11)

    We find the equation of the circle by setting \(z = 0\):

    \[\begin{align*} 0 &= 2 - \sqrt{x^2 + y^2} \\ 2 &= \sqrt{x^2 + y^2} \\ x^2 + y^2 &= 4. \end{align*}\]

    This means the radius of the circle is \(2\) so for the integration we have \(0 \leq \theta \leq 2\pi\) and \(0 \leq r \leq 2\). Substituting \(x = r \, \cos \theta\) and \(y = r \, \sin \, \theta\) in the equation \(z = 2 - \sqrt{x^2 + y^2}\) we have \(z = 2 - r\). Therefore, the volume of the cone is

    \[\int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=2} (2 - r)\,r \, dr \, d\theta = 2 \pi \frac{4}{3} = \frac{8\pi}{3}\; \text{cubic units.} \nonumber \]

    Analysis

    Note that if we were to find the volume of an arbitrary cone with radius \(\alpha\) units and height \(h\) units, then the equation of the cone would be \(z = h - \frac{h}{a}\sqrt{x^2 + y^2}\).

    We can still use Figure \(\PageIndex{10}\) and set up the integral as

    \[\int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=a} \left(h - \frac{h}{a}r\right) r \, dr \, d\theta. \nonumber \]

    Evaluating the integral, we get \(\frac{1}{3} \pi a^2 h\).

    Exercise \(\PageIndex{5}\)

    Use polar coordinates to find an iterated integral for finding the volume of the solid enclosed by the paraboloids \(z = x^2 + y^2\) and \(z = 16 - x^2 - y^2\).

    Hint

    Sketching the graphs can help.

    Answer

    \[V = \int_0^{2\pi} \int_0^{2\sqrt{2}} (16 - 2r^2) \,r \, dr \, d\theta = 64 \pi \; \text{cubic units.} \nonumber \]

    As with rectangular coordinates, we can also use polar coordinates to find areas of certain regions using a double integral. As before, we need to understand the region whose area we want to compute. Sketching a graph and identifying the region can be helpful to realize the limits of integration. Generally, the area formula in double integration will look like

    \[\text{Area of} \, A = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} 1 \,r \, dr \, d\theta. \nonumber \]

    Example \(\PageIndex{6A}\): Finding an Area Using a Double Integral in Polar Coordinates

    Evaluate the area bounded by the curve \(r = \cos \, 4\theta\).

    Solution

    Sketching the graph of the function \(r = \cos \, 4\theta\) reveals that it is a polar rose with eight petals (see the following figure).

    15.3: Double Integrals in Polar Coordinates (12)

    Using symmetry, we can see that we need to find the area of one petal and then multiply it by 8. Notice that the values of \(\theta\) for which the graph passes through the origin are the zeros of the function \(\cos \, 4\theta\), and these are odd multiples of \(\pi/8\). Thus, one of the petals corresponds to the values of \(\theta\) in the interval \([-\pi/8, \pi/8]\). Therefore, the area bounded by the curve \(r = \cos \, 4\theta\) is

    \[\begin{align*} A &= 8 \int_{\theta=-\pi/8}^{\theta=\pi/8} \int_{r=0}^{r=\cos \, 4\theta} 1\,r \, dr \, d\theta \\ &= 8 \int_{\theta=-\pi/8}^{\theta=\pi/8}\left.\left[\frac{1}{2}r^2\right|_0^{\cos \, 4\theta}\right] d\theta \\ &= 8 \int_{-\pi/8}^{\pi/8} \frac{1}{2} \cos^24\theta \, d\theta \\&= 8\left. \left[\frac{1}{4} \theta + \frac{1}{16} \sin \, 4\theta \, \cos \, 4\theta \right|_{-\pi/8}^{\pi/8}\right] \\&= 8 \left[\frac{\pi}{16}\right] = \frac{\pi}{2}\; \text{units}^2. \end{align*}\]

    Example \(\PageIndex{6B}\): Finding Area Between Two Polar Curves

    Find the area enclosed by the circle \(r = 3 \, \cos \, \theta\) and the cardioid \(r = 1 + \cos \, \theta\).

    Solution

    First and foremost, sketch the graphs of the region (Figure \(\PageIndex{12}\)).

    15.3: Double Integrals in Polar Coordinates (13)

    We can from see the symmetry of the graph that we need to find the points of intersection. Setting the two equations equal to each other gives

    \[3 \, \cos \, \theta = 1 + \cos \, \theta. \nonumber \]

    One of the points of intersection is \(\theta = \pi/3\). The area above the polar axis consists of two parts, with one part defined by the cardioid from \(\theta = 0\) to \(\theta = \pi/3\) and the other part defined by the circle from \(\theta = \pi/3\) to \(\theta = \pi/2\). By symmetry, the total area is twice the area above the polar axis. Thus, we have

    \[A = 2 \left[\int_{\theta=0}^{\theta=\pi/3} \int_{r=0}^{r=1+\cos \, \theta} 1 \,r \, dr \, d\theta + \int_{\theta=\pi/3}^{\theta=\pi/2} \int_{r=0}^{r=3 \, \cos \, \theta} 1\,r \, dr \, d\theta \right]. \nonumber \]

    Evaluating each piece separately, we find that the area is

    \[A = 2 \left(\frac{1}{4}\pi + \frac{9}{16} \sqrt{3} + \frac{3}{8} \pi - \frac{9}{16} \sqrt{3} \right) = 2 \left(\frac{5}{8}\pi\right) = \frac{5}{4}\pi \, \text{square units.} \nonumber \]

    Exercise \(\PageIndex{6}\)

    Find the area enclosed inside the cardioid \(r = 3 - 3 \, \sin \theta\) and outside the cardioid \(r = 1 + \sin \theta\).

    Hint

    Sketch the graph, and solve for the points of intersection.

    Answer

    \[A = 2 \int_{-\pi/2}^{\pi/6} \int_{1+\sin \, \theta}^{3-3\sin \, \theta} \,r \, dr \, d\theta = \left(8 \pi + 9 \sqrt{3}\right) \; \text{units}^2 \nonumber \]

    Example \(\PageIndex{7}\): Evaluating an Improper Double Integral in Polar Coordinates

    Evaluate the integral

    \[\iint_{R^2} e^{-10(x^2+y^2)} \,dx \, dy. \nonumber \]

    Solution

    This is an improper integral because we are integrating over an unbounded region \(R^2\). In polar coordinates, the entire plane \(R^2\) can be seen as \(0 \leq \theta \leq 2\pi, \, 0 \leq r \leq \infty\).

    Using the changes of variables from rectangular coordinates to polar coordinates, we have

    \[\begin{align*} \iint_{R^2} e^{-10(x^2+y^2)}\,dx \, dy &= \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=\infty} e^{-10r^2}\,r \, dr \, d\theta = \int_{\theta=0}^{\theta=2\pi} \left(\lim_{a\rightarrow\infty} \int_{r=0}^{r=a} e^{-10r^2}r \, dr \right) d\theta \\ &=\left(\int_{\theta=0}^{\theta=2\pi}\right) d\theta \left(\lim_{a\rightarrow\infty} \int_{r=0}^{r=a} e^{-10r^2}r \, dr \right) \\ &=2\pi \left(\lim_{a\rightarrow\infty} \int_{r=0}^{r=a} e^{-10r^2}r \, dr \right) \\ &=2\pi \lim_{a\rightarrow\infty}\left(-\frac{1}{20}\right)\left(\left. e^{-10r^2}\right|_0^a\right) \\ &=2\pi \left(-\frac{1}{20}\right)\lim_{a\rightarrow\infty}\left(e^{-10a^2} - 1\right) \\ &= \frac{\pi}{10}. \end{align*}\]

    Exercise \(\PageIndex{7}\)

    Evaluate the integral

    \[\iint_{R^2} e^{-4(x^2+y^2)}dx \, dy. \nonumber \]

    Hint

    Convert to the polar coordinate system.

    Answer

    \(\frac{\pi}{4}\)

    Key Concepts

    • To apply a double integral to a situation with circular symmetry, it is often convenient to use a double integral in polar coordinates. We can apply these double integrals over a polar rectangular region or a general polar region, using an iterated integral similar to those used with rectangular double integrals.
    • The area \(dA\) in polar coordinates becomes \(r \, dr \, d\theta\).
    • Use \(x = r \, \cos \, \theta, \, y = r \, \sin \, \theta\), and \(dA = r \, dr \, d\theta\) to convert an integral in rectangular coordinates to an integral in polar coordinates.
    • Use \(r^2 = x^2 + y^2\) and \(\theta = tan^{-1} \left(\frac{y}{x}\right)\) to convert an integral in polar coordinates to an integral in rectangular coordinates, if needed.
    • To find the volume in polar coordinates bounded above by a surface \(z = f(r, \theta)\) over a region on the \(xy\)-plane, use a double integral in polar coordinates.

    Key Equations

    • Double integral over a polar rectangular region \(R\)

    \[\iint_R f(r, \theta) dA = \lim_{m,n\rightarrow\infty}\sum_{i=1}^m \sum_{j=1}^n f(r_{ij}^*, \theta_{ij}^*) \Delta A = \lim_{m,n\rightarrow\infty}\sum_{i=1}^m \sum_{j=1}^nf(r_{ij}^*,\theta_{ij}^*)r_{ij}^*\Delta r \Delta \theta \nonumber \]

    • Double integral over a general polar region

    \[\iint_D f(r, \theta)\,r \, dr \, d\theta = \int_{\theta=\alpha}^{\theta=\beta} \int_{r=h_1(\theta)}^{r_2(\theta)} f (r,\theta) \,r \, dr \, d\theta \nonumber \]

    Glossary

    polar rectangle
    the region enclosed between the circles \(r = a\) and \(r = b\) and the angles \(\theta = \alpha\) and \(\theta = \beta\); it is described as \(R = \{(r, \theta)\,|\,a \leq r \leq b, \, \alpha \leq \theta \leq \beta\}\)
    15.3: Double Integrals in Polar Coordinates (2024)

    FAQs

    How to set up double integrals in polar coordinates? ›

    The double integral ∬Df(x,y)dA in rectangular coordinates can be converted to a double integral in polar coordinates as ∬Df(rcos(θ),rsin(θ))rdrdθ.

    How to find the bounds of a double integral in polar coordinates? ›

    You get the bounds simpl by putting the value or taking the limit for each coordinate. For example say r=√x2+y2 and say that x,y∈[0,2]. Then you look at the maximum and minimum of r as a function of x and y. The solution will be an interval because r(x,y) is continuous.

    What is the double integral of a polar region? ›

    In the case of double integral in polar coordinates we made the connection dA=dxdy. dxdy is the area of an infinitesimal rectangle between x and x+dx and y and y+dy. In polar coordinates, dA=rd(theta)dr is the area of an infinitesimal sector between r and r+dr and theta and theta+d(theta).

    How to calculate integral in polar coordinates? ›

    Use x=rcosθ,y=rsinθ, and dA=rdrdθ to convert an integral in rectangular coordinates to an integral in polar coordinates. Use r2=x2+y2 and θ=tan−1(yx) to convert an integral in polar coordinates to an integral in rectangular coordinates, if needed.

    What is the formula for double integration? ›

    Double Integration Rule

    Integration by parts is a method for integrating integrands containing two functions, and the formula for interaction by parts is: ∫ u ( x ) v ( x ) d x = u ( x ) v ( x ) | − ∫ v ( x ) d u .

    How to convert into polar coordinates? ›

    To convert from polar co-ordinates to Cartesian co-ordinates, use the equations x = r cos θ , y = r sin θ . To convert from Cartesian co-ordinates to polar co-ordinates, use the equations r2 = x2 + y2 , tan θ = y x .

    How do you find the upper and lower bounds of a double integral? ›

    You should use x=y2 for the lower bound and x=y+2 for the upper because integrals are direction dependent. Values of the function are added when moving in the direction x increased. This is for each fixed y just the fact that ∫baf(x)dx=−∫abf(x)dx Convention makes this positive if a<b and f(x)>0.

    What are the bounds of polar integration? ›

    The bounds can be found by finding the intersections of the two polar curves. The bounds of integration are from θ = − π 2 to . Step 2: Set up the definite integral ∫ a b 1 2 ( g ( θ ) 2 − f ( θ ) 2 ) d θ where g ( θ ) ≥ f ( θ ) in the region to be integrated.

    What is the formula for the double integral over a rectangular region? ›

    As we mentioned before, when we are using rectangular coordinates, the double integral over a region R denoted by ∬Rf(x,y)dA can be written as ∬Rf(x,y)dxdy or ∬Rf(x,y)dydx. The next example shows that the results are the same regardless of which order of integration we choose.

    What is the formula for polar coordinates? ›

    To convert from rectangular coordinates to polar coordinates, use one or more of the formulas: cosθ=xr, sinθ=yr, tanθ=yx, and r=√x2+y2.

    How do you solve for polar coordinates? ›

    To convert from Cartesian coordinates to polar coordinates: r = x 2 + y 2 . Since tan θ = y x , θ = tan − 1 ( y x ) . So, the Cartesian ordered pair converts to the Polar ordered pair ( r , θ ) = ( x 2 + y 2 , tan − 1 ( y x ) ) .

    How do you convert 2d Cartesian coordinates to polar coordinates? ›

    You can convert cartesian coordinates (x, y) to polar coordinates (r, θ) using the formulas r = √(x² + y²) and θ = atan2(y, x).

    What is R 2 in polar coordinates? ›

    r=2 in polar coordinates represents a circle of. radius 2, with the centre at the origin. Interpretation; r=sq.rt.(x^2+y^2) So sq.rt.(x^2+y^2)=2.

    Top Articles
    A year after Dark and Darker became one of the biggest games on Steam, a newcomer is trying to steal its thunder
    Ohio State final score and stats, plus postgame updates vs. Purdue
    All Obituaries | Sneath Strilchuk Funeral Services | Funeral Home Roblin Dauphin Ste Rose McCreary MB
    Wal-Mart 2516 Directory
    Demon Souls Moonshadestone
    Denman Promo Code
    T800 Kenworth Fuse Box Diagram
    Old Bahama Bay Quad Folding Wagon
    Boomerang Uk Screen Bug
    Tmobile Ipad 10Th Gen
    Cristiano Ronaldo's Jersey Number: The Story Behind His No. 7 Shirt | Football News
    Morbus Castleman - Ursachen, Symptome & Behandlung
    Brazos County Jail Times Newspaper
    ‘Sound of Freedom’ Is Now Streaming: Here’s Where to Stream the Controversial Crime Thriller Online for Free
    Allegra Commercial Actress 2022
    Busted Newspaper Randolph County
    At 25 Years, Understanding The Longevity Of Craigslist
    Leaks Mikayla Campinos
    Masdar | Masdar’s Youth 4 Sustainability Announces COP28 Program to Empower Next Generation of Climate Leaders
    Ebony Pyt Twerk
    352-730-1982
    How Much Is Felipe Valls Worth
    123Movies Evil Dead
    Exploring Green-Wood Cemetery: New York Citys First Garden Cemetery | Prospect Park West Entrance,Brooklyn,11218,US | October 6, 2024
    Moss Adams Client Portal
    We Take a Look at Dating Site ThaiFlirting.com in Our Review
    Noel Berry's Biography: Age, Height, Boyfriend, Family, Net Worth
    Duitse Rechtspraak: is de Duitse Wet op het minimumloon wel of niet van toepassing op buitenlandse transportondernemingen? | Stichting Vervoeradres
    Meritas Health Patient Portal
    209-929-1099
    三上悠亜 Thank You For Everything Mikami Yua Special Photo Book
    Frigjam
    Surprise | Visit Arizona
    Ups Store Laptop Box
    Alloyed Trident Spear
    Rule 34 Supreme Court: Key Insights and Implications
    Wells Fargo Arena Des Moines Seating Chart Virtual View
    Sierra Vista Jail Mugshots
    Associate Resources Aces-How To Create An Account And How Its Features Work
    Www.craiglist.com San Antonio
    Fuzz Bugs Factory Number Bonds
    Swissport Timecard
    Top 10 websites to play unblocked games
    University Of Michigan Paging System
    Jesus Calling December 1 2022
    Breckie Hill Shower Gif
    Azpeople Self Service
    Rubrankings Austin
    Pkittens
    Caldo Tlalpeño de Pollo: Sabor Mexicano - Paulina Cocina
    Texas State Final Grades
    Mri Prospect Connect
    Latest Posts
    Article information

    Author: Rubie Ullrich

    Last Updated:

    Views: 5983

    Rating: 4.1 / 5 (52 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Rubie Ullrich

    Birthday: 1998-02-02

    Address: 743 Stoltenberg Center, Genovevaville, NJ 59925-3119

    Phone: +2202978377583

    Job: Administration Engineer

    Hobby: Surfing, Sailing, Listening to music, Web surfing, Kitesurfing, Geocaching, Backpacking

    Introduction: My name is Rubie Ullrich, I am a enthusiastic, perfect, tender, vivacious, talented, famous, delightful person who loves writing and wants to share my knowledge and understanding with you.